

G12 A SEARCH FOR EXOTIC MESONS

DIANE SCHOTT, FIU

WHAT MAKES J^{PC}=1⁻⁺ EXOTIC?

- violates pc-conservation
 - for pi(1400) Jpc=1-+
 - $P=-(-1)^1=-$ need 1 to be even
 - $C=(-1)^{l+s}=+$ implies s=0 and J=l, so J is even and excludes J=1
- thought to be quark anti-quark pairs with a vibrating gluon flux-tube
- can have isospin 0 or 1, unlike expected with glue-ball

PURPOSE

- Theoretical predictions in both gluonic flux-tube models and lattice gauge theory predict lightest hybrids at 1.9 GeV for Jpc=1-+
- recent experiments using pion beams at Brookhaven showed possible evidence of excited pions at 1400 MeV which is to low for the gluonic hybrid predictions.
- however some controversy over states created by pion-production...
 - resonance behavior was not compelling
 - unnatural parity exchange, not consistent with Breit-Wigner parameters
- photo-production
 - should get good signal 10 times as in pion-production

$\Upsilon + P \rightarrow \Delta^{++} + \eta + \pi^{-}$

PARTIAL WAVE ANALYSIS

- Partial wave analysis separates Jpc states of a meson resonance
 - fits measured observables (angular and kinetic distributions) to determine production strength of each partial wave
- looking to find a peak in the J^{pc}= 1⁻⁺ intensity plot which would be a violation of the q q-bar model and would show the existence of an excited meson state

HALL B

- designed for experiments
 requiring simultaneous
 detection of multiple particles in
 final states
- high counting rates for experiments with luminosity limitations due to tagged photon beam or polarized target operation

- for either electron beam or photon beam
- good resolution for charged particles and neutrals by missing mass technique
- high luminosity
- good particle identification

CLAS

SET-UP

SETUP

- electron beam energy of 5.715 GeV, circularly polarized
- beam current 60nA
- 10⁻⁴ gold radiator
- LH2 target is located at -90 cm from the center of CLAS
- torus current was 1930A (half max)

ADDITIONAL DETECTORS

- Needed to detect at small scattering angles since CLAS is not well designed for forward-going systems
- Needs to differentiate between charged and neutral particles
- Must be able to operate in high magnetic field

INNER CALORIMETER
HODOSCOPE

INNER CALORIMETER (IC)

- will enhance photon detection at small angles
- good energy and position resolution
- preformed well in 2005
 experiment
- Can't separate electrons from photons
- limited resolution at low Q²

HODOSCOPE

- made up of 56 scintillator plates
- each plate is 3.8 by 3.8 cm² and 1 cm thick
- plates are embedded with wavelength shifting fibers
- fibers read off by Silicon Photo-Multiplier (SiPM) ... functions well under high magnetic field
- detects charged particles but will be undisturbed by neutrals

complications:

-DOCAs (distance of closest approach) obtained from fitted tracks are biased quantities since initial estimate of drift velocity is used in track determination

-drift cells and isochrones aren't circular, as analysis assumes therefore angle dependent corrections

-R2 chambers are in high and spatially varying magnetic field region. (need to know entry angles of track for drift distance)

-different ionization densities of the tracks from particles w/ different velocity leads to substantial time-walk

